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Abstract. In this paper stochastic algorithms for global optimization are reviewed. After a brief 
introduction on random-search techniques, a more detailed analysis is carried out on the application of 
simulated annealing to continuous global optimization. The aim of such an analysis is mainly that of 
presenting recent papers on the subject, which have received only scarce attention in the most recent 
published surveys. Finally a very brief presentation of clustering techniques is given. 
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Introduction 

In this paper stochastic techniques for the optimization of multi-modal functions 
are presented. Within this class are indeed the best-performing algorithms for the 
global optimization problem. One of the main reasons for this to happen is that 
the problem of globally optimizing a real-valued function is inherently intractable 
(unless hard restrictions are imposed on the objective function) in that no 
practically useful characterization of the global optimum is available (like, for 
example, in the well known case of smooth local optimization, conditions on the 
gradient and hessian of the objective function); this fact has given rise to different 
streams of research which may be very roughly classified as “deterministic” and 
“stochastic”. To the first class belong those algorithms which implicitly search all 
of the function domain and thus are guaranteed to find the global optimum; 
algorithms within this class are forced to deal with severely restricted classes of 
functions (e.g. Lipschitz continuous functions with known Lipschitz constant). 
Unfortunately, in most cases it is not sensible to assume a particular structure on 
the objective function; moreover, even if it is known that the objective function 
is, e.g., Lipschitzian, it is often computationally infeasible to search for a 
guaranteed global optimum, as the number of computation required increases 
exponentially with the dimension of the feasible space. To overcome the inherent 
difficulties of guaranteed-accuracy algorithms, much research effort has been 
devoted to algorithms in which a stochastic element is introduced; this way the 
deterministic guarantee is relaxed into a confidence measure; the rationale behind 
this approach is mainly due to the very nature of actual global optimization 
problems: deterministic global optimization algorithms tune their behaviour on 
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the worst possible objective function, while stochastic algorithms tend to smooth 
out pathological functions, being more sensible to some kind of an “average” 
objective function (where the word average should be interpreted in a very loose 
sense). 

Within the class of global optimization algorithms in which some stochastic 
element is introduced, the following broad distinction can be made: 

l algorithms which assume a stochastic model. Typically in this class the 
objective function itself is seen as a sample path of some stochastic process; 
information on the objective function is sequentially updated via Bayes’ rule. 
In some approaches a stochastic model is given only on the local optimizers 
and/or the associated function value. A detailed review of algorithms within 
this class is given in [5]. 

l algorithms which are stochastic in nature, i.e. algorithms in which the 
placement of observations is based on the generation of random points in the 
domain of the objective function. This paper will present algorithms within 
this class. 

Within both frameworks several successful algorithms have been proposed in 
which probabilistic as well as heuristic techniques are mixed. 

Obviously a definite statement about the claimed superiority of stochastic 
algorithms over deterministic ones is impossible to give; however, theoretical 
considerations as well as practical experience suggest that for problems of 
moderate to high dimension the use of stochastic technique is the only feasible 
approach. 

Recently a very good and comprehensive survey of global optimization ap- 
peared [39]: the interested reader is addressed to this reference for a thorough 
coverage of all the aspects of global optimization. The paper presented here 
(differently from the cited survey) will be strongly biased towards stochastic 
algorithms; in order not to duplicate the work in the cited survey, in this paper 
some aspects of stochastic techniques will be presented as well as recent advances 
(not included in the book of Torn and iilinskas) discussed. In particular, recent 
results and new directions in the area of the application of simulated annealing to 
the optimization of multimodal functions will be presented. This is an area of 
quite active research which deserved too little attention in recent surveys, so it 
seems natural to devote to it a significant part of this paper. 

1. The Global Optimization Problem 

In this section the basic definitions and notation will be set up. The optimization 
problem hereon called “global optimization problem” is defined as that of finding 

(1) 
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where: 

l A is a compact subset of RN, with N > 0. Even if not strictly necessary, in the 
following it will be tacitly assumed that A is the unit hypercube in RN; this 
way the optimization problem will be “almost unconstrained”, i.e. only 
simple bounded; moreover the random generation of a point in A, which is a 
fundamental step in most of the stochastic algorithms, will be an easier task 
(although far from trivial, particularly for large N). 

l f : A H 03 is the objective function; its smoothness is assumed to be that 
required by the algorithm: for example while simple random sampling off 
over A requires almost no condition on f, algorithms based on performing 
some local searches usually require f to be twice continuously differentiable. 
As a matter of facts, it will be generally assumed that f is at least continuous, 
but sometimes only measurability will be required. 

l f* is the global optimum of f over A; under the above conditions of 
compactness of A and continuity off a finite f * is guaranteed to exist. If the 
continuity assumption is dropped, the definition (1) is changed to the 
following 

f * = inf{ y : p(n E A : f(x) < y) = 0} 

where p( .) is a positive measure on the Bore1 sets of RN (usually the 
Lebesgue measure). This way the problem is redefined as that of finding the 
essential infimum of f over A. 

The weak assumptions stated above on the objective function f and its domain A 
are required only to separate the very problem of global optimization from the 
(well known, but far from being easy) subproblems of local optimization and of 
random vector generation. 

It is to be noticed also that usually algorithms for global optimization produce, 
as an output, not only an estimate, say f, of the global optimum, but also a point 
2 E A such that f(2) = $ This does not mean that P is a good estimate of the 
optimizer, in the sense that there is no guarantee that 2 is close to the set 

X* = {x* E A : f(x*) =s f(x)Vx E A} . 

Indeed it is easily shown that the problem of determining an accurate estimate of 
a global optimizer is mathematically ill-posed, in the sense that very similar 
objective functions (where similarity is meant with respect to some distance 
measure) may have very distant global optimizers. 

2. Stochastic Algorithms 

A general stochastic algorithm for global optimization consists of three distinct 
major steps: a sampling step, an optimization step, a check of some stopping 
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criterion. More explicitly, the sampling step basically consists of generating 
random points in the domain A and computing the associated function value; the 
optimization step consists of applying a local optimization routine to some 
(possibly none or all) of the sampled points; the stopping criterion, which often 
represents the most critical part in the design of an algorithm, is used to stop the 
algorithm when there is sufficient evidence that the global optimum has been 
detected or that the “cost” connected with the search for a better estimate of the 
global optimum would be too high, or that some kind of “resource” has been 
exhausted, like, for example, computer time or number of function evaluations. 
In particular it is possible to distinguish some major classes of algorithms based on 
different choices of these steps; without pretending to be exhaustive, a tentative 
classification could be made as follows: 

l Sampling step: 
Cardinality of the sample: 
- a fixed number of points per sample are generated 
- a sample is generated whose cardinality is sequentially and adaptively 

determined by the algorithm 
Sampling strategy 
- Points are drawn in A as independent, identically distributed (i.i.d.) 

random vectors (usually uniform on A) 
- Points are drawn in A as random vectors following a distribution whose 

support is a prescribed neighborhood of the current point (often uniform 
on a sphere or on a hypercube centered at the current point or normal 
centered at the current point with prescribed variance / covariance 
matrix) 

- New points are generated according to a distribution which depends 
explicitly on previously generated points and/or associated function 
values (not only on the current point) 

l Optimization step: 
- no local search is performed 
- a local search is started from a selected number y1 of sampled points 
- a local search is started from each of the sampled points 

l Stopping rule: 
- stopping occurs after a fixed number of steps or function evaluations 
- stopping occurs when no improvement has been reported in the last few 

iterations 
- stopping occurs when an a posteriori estimate of the probability that no 

unobserved local optimum exists exceeds a threshold 
- stopping occurs when an a posteriori measure of the expected benefit in 

continuing the algorithm (measured in terms of the trade-off between 
the possible gain connected with the discovery of a new local optimum 
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and the computational cost to be paid for such a discovery) falls below 
some threshold. 

3. From Pure Random Search to Multistart 

In this section some of the simplest random search-like algorithms will be briefly 
reviewed. These are the most basic schemes for global optimization and they lend 
themselves quite naturally to detailed theoretical analysis. Indeed some quite 
general result is available for classes of random search-like methods (most of 
them based on considerations related to the Borel-Cantelli lemma). Despite the 
apparent simplicity of the algorithms presented in this section, there are still some 
critical issues on the practical implementation for which satisfactory answers are 
still lacking; the most critical of this is the problem of stopping rules. On the other 
side, some of these simple algorithmic schemes, when implemented, have proven 
to be remarkably reliable, even when compared with more advanced and refined 
methods, like those which will be introduced in the successive sections. The 
material in this section is quite standard and is reported here only for com- 
pleteness. 

- %(A) be a uniform random vector in 

Fig. 1. Pure random search. 

Pure random search is the easiest implementation of a Monte Carlo algorithm for 
global optimization. Its limited practical usefulness is mainly due to the fact that 
most of the information gathered during the execution of the algorithm is lost, as 
no use is made of function values and of function structure. On the other side it is 
the easiest algorithm to analyze and to implement (even, trivially, on a parallel 
computer). The algorithm shares with many other random search algorithms the 
basic weakness of consuming a lot of computational power in trying to obtain, 
through random exploration, points with relatively good function values. How- 
ever, if the objective function is even moderately smooth, the task of improving 
over current function values is much more efficiently performed by local optimiza- 
tion routines; in other words, what seems to be lacking in most random search 
type algorithms is a clear distinction between the task of locally improving the 
function values and the task of exploration, which is peculiar to the random 
nature of the algorithms considered in this paper. For more details and references 
to this simple, algorithm refer to the cited book [39], or to other less recent 
surveys [33,3]. 
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1. let f* := +a 1. let f* := +a 
2. if a stopping criterion is satisfied then go to 5 2. if a stopping criterion is satisfied then go to 5 

otherwise let x - Q(A) be a uniform random vector in otherwise let x - Q(A) be a uniform random vector in 
A. I A. 

3. iff*>f(x) thenZetf*:= f(x) andr*:=x 
4. got02 
5. Performing a local optimization starting from x* 

Fig. 2. Single start. 

Single start differs from pure random search in that a single local optimization is 
performed at the end of the sampling procedure from the most “promising” 
point; again most of the information gained during the execution is lost. 

1. let f*:= +m 
2. if a stopping criterion is satisfied then stop; 

otherwise let x - %(A) be a uniform random vector in 
A. 

3. perform a local optimization starting from x: 
let X be the local optimizer and f := f(X) 

4. Zetf*:=min(f*, f) 
5. got02 

Fig. 3. Multistart. 

Multistart is, in some sense, on the opposite side of pure random search with 
respect to the use of local information. In this algorithm a local search routine is 
started from each sampled point. Let the local search routine be considered as a 
mapping Z(. ) f rom A into itself which to each starting point x associates a local 
optimizer X (in which case x is said to belong to the “region of attraction” of X, 
i.e. Z’(X)). Then Multistart can be seen as a pure random search applied to the 
piecewise constant function 

F(s) = fo Z(x) = f(-re(x)) . (2) 

The main difference with respect to Pure Random Search is that here function 
evaluation is very expensive, so that the obvious disadvantage of Multistart is that 
much effort is spent in doing local searches which eventually lead to already 
discovered local minima; it is the purpose of clustering methods to try to 
overcome this difficulty, as will be seen in Section 5. Anyway, Multistart deserves 
consideration as its behaviour, when a sufficiently accurate stopping rule is used, 
is remarkably good despite the great simplicity of the algorithm itself. Thorough 
investigation on the behaviour of Multistart is reported in [43,9,6,7,8]. 
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1. let D:Ax @++A be given 
2. ZetxEA 
3. let f* : = f(x)) 
4. if a stopping criterion is satisfied then stop; 

otherwise let F be a orobabilitv distribution function 
5. let 5 be a random vector sampled from F 
6. let x := D(x, 5) 
7. Zetf*:=min(f*, f(x)) 
8. got04 I 

Fig. 4. Random directions. 

In the method of random directions, analyzed in the present form in [35], at each 
iteration a probability distribution function F is chosen, possibly as a function of 
the current point x, and a trial vector 5 (usually, but not necessarily, belonging to 
A) is generated according to such a distribution; the new iterate is now obtained 
through the application of a transformation D : A x RN H A. Through different 
choices of the probability distribution and of the mapping D a whole range of 
stochastic algorithms is obtained. Notice, in particular, that choosing F to be the 
uniform distribution over A and D to be defined as D(x, 6) = arg min{ f(x), 
f(c)}, the pure random search is obtained, while the choice D(x, 5) = Z’(t) 
corresponds to Multistart. In many variants of the basic scheme, the probability 
distribution F is chosen as the uniform distribution over a sphere centered at x 
with prescribed radius or as a gaussian distribution with mean x and a prefixed 
variance-covariance matrix. The name of the algorithm comes from the fact that x 
and 5 together identify a random line and, in many instances, the mapping D is 
chosen as some kind of line search along the direction 5 - x. In particular there 
are many variations of the basic algorithm in which 

D(x, 5) = x + a*( r$ - x) 

a *=argmjnf(x+c4!(<-xX)) 

the most commonly used of which are those in which (Y is constrained to range 
over one of the sets [0, I], [0,2], [0, +a), or even the discrete set (0, l}. 

It is shown in [35] that converge in probability of the sequence generated by the 
algorithm to a set 

R, = {x E A : f(x) <f * + e} 

for every choice of E > 0 is achieved under the conditions that 

l the mapping D ensures that no strict ascent steps are performed (i.e., 
f(D(x, 0) ~.f(x)h and 

l for every Bore1 set B of positive (Lebesgue) measure, denoting by P, the 
probability measure chosen at the kth iteration, then 
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fi (1 - P,(B)) = 0 ; 
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k=l 

this way the possibility of repeatedly missing any Bore1 set of positive 
measure is ruled out. 

Methods in this class generally are quite simple to implement, even if sensible 
stopping rules are very difficult to derive: in [35] the search for such stopping rules 
is dubbed as doomed to fail. Even if we are not so pessimistic, it should be 
evident that the choice of an appropriate stopping criterion is the crucial step in 
all of the algorithms discussed in this paper. 

As a general remark on methods based on random directions, again it is to be 
stressed the fact that almost no use is made of the powerful theory and algorithms 
of local optimization: the methods thus appear to be well suited only for a special 
class of optimization problems characterized by the presence of a huge number of 
local optima and/or the unavailability of information on the derivatives of the 
objective function. 

4. Simulated Annealing 

Recently quite a lot of research effort has been devoted to variants of a Monte 
Carlo technique which corresponds to the simulation of the physical process of 
annealing, i.e. the process of driving a physical system to a minimal energy 
configuration by means of a slow reduction in the temperature of the system; if 
the “cooling” process is carried out sufficiently slowly, the system is allowed to 
skip over locally stable (minimum energy) configurations. Noticing the analogy 
between configurations of a physical system and feasible solutions of an instance 
of an optimization problem, and between the energy function and the cost to be 
optimized, in the early 80’s two papers 1241 and [13], independently opened the 
way to a large field of theoretical as well as applied research, mainly devoted to 
combinatorial optimization problems; for extensive surveys see [26] and [l]. 
Recently a comprehensive annotated bibliography appeared [15] on the theory 
and application of simulated annealing both to combinatorial and continuous 
optimization problems. 

Apart from the analogy with the behaviour of physical systems, which, though 
appealing, can give at most an heuristic justification for the algorithm, the main 
characteristics of this approach lie in the possibility of escaping from the region of 
attraction of poor local optima by means of a controlled acceptance/rejection rule 
which selectively admits ascent steps in the course of the optimization process. 

The general scheme of simulated annealing is sketched in Figure 5. 
The crucial step in the algorithm is the decision whether or not to accept a new 

“configuration” y in place of the current one x: acceptance of the new configura- 
tion is made with probability 

min{l, exp( - f(y) ,f(X))] 
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1. ZetxEA 
2. let f * := f(x) 
3. let T > 0 be the “initial temperature” 
4. if a stopping criterion is satisfied then stop; 

otherwise do 
(a) if “equilibrium is reached” then exit this loop; 
(b) let y be a random neighbor of x 
(c) let U - %([O, 11) be a uniform random number in 

PA 11 
(d) ifexp(-(f(y)-f(x))lT)> U then Zetx:= y 
(e) go to 4a 

5. let T be a new temperature value 
6. got04 

Fig. 5. Simulated annealing. 

where T is the current value of the control parameter (“temperature”). This way 
every descent step is accepted, but it is also possible, albeit to a limited extent, to 
perform “up-hill” moves. 

Several decisions have to be made in order to let the conceptual algorithm 
described in the figure become an implementable one; the steps involved are the 
following 

l choice of an initial “temperature”: a rule has to be given in order to obtain a 
starting value for the control parameter. Choosing a value which is too high 
slows down considerably the algorithm, while choosing a value too close to 0 
will tend to exclude the possibility of ascent steps, thus losing the global 
optimization feature of the method. 

l choice of an adequate stopping rule: as it has already been pointed out, this is 
almost always the crucial and most difficult part of the algorithm, and its 
definition may have dramatic influence on the overall performance. 

l choice of a criterion for detecting equilibrium: this is some sort of another 
stopping rule; ideally, for each value of the control parameter, the inner loop 
of the conceptual algorithm should be executed infinitely often in order to let 
the “system reach equilibrium”. More formally, as the sequence of points 
generated by the algorithm inside the inner loop can be seen as a realization 
of time-homogeneous Markov chain, then the execution of the loop is a 
simulation run of the Markov chain which, under ergodicity conditions, 
asymptotically reaches equilibrium. 

The choice at this step is intrinsically linked to the 

l choice of the temperature decrement strategy: again, too fast the decrement, 
the higher the probability of being trapped in a poor local minimum; on the 
other side a slow decrement rule causes the algorithm to be unacceptably 
slow. Taking into account the outermost loop and considering the fact that 
the innermost loop is in practice executed a finite number of times, the whole 
sequence of points generated can be seen as a time inhomogeneous Markov 
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chain. Based upon this characterization, several theoretical results concerning 
the convergence properties and finite time behaviour of simulated annealing 
have appeared in the literature (see the references in the cited books [26, l] 
and more recent analyses in [40,25,14,19]), as well as hints on the choice of 
the decrement rule given. From the point of view of the practical application 
of simulated annealing to optimization problems, the last, but not least, 
crucial step is the 

l choice of an appropriate neighborhood structure. While general results are 
available for all of the critical issues discussed above, the way in which a 
“neighbor” y of the current solution x is defined is clearly problem-depen- 
dent. In continuous global optimization usually such a problem corresponds 
both to the generation of a direction and of a step length along such a 
direction. 

From a theoretical point of view, the interest of simulated annealing for global 
optimization is easily motivated. In fact let the Boltzmann distribution be defined 
as 

n’(x) 0~ exp( -f(x) / 7’) Vx E A (4) 

where T > 0 is the temperature; under mild assumptions (4) is easily seen to 
converge, as T J 0, to a uniform distribution over the set of global minimizers of 
f on A. Of course it is not feasible to sample directly from (4) (this would require 
the observation off on every x E A); when T is fixed, the Metropolis algorithm 
[29] can be employed, which consists in the simulation of a sample path from a 
Markov process (dealing, for simplicity, with a continuous time simulation) whose 
intensity is given by 

R,(x, Y> = e [f(Y)-f(x)l+/TS(X, y) vx, y E A (5) 
where S is any symmetric irreducible intensity matrix. It is immediately seen that 
the inner loop in Figure 5 is a discrete time implementation of this algorithm, with 
a prescribed temperature. 

In the following we will present and briefly discuss the bibliography devoted to 
the study of the application of simulated annealing and similar techniques to the 
problem of continuous global optimization. The relative length of this section is 
by no means a measure of the author’s confidence on the method, but is only due 
to the strong interest that the general approach of simulated annealing has risen in 
these last few years and to the relatively scarce discussion of its efficiency on 
continuous global optimization problems. 

Vanderbilt and Louie, 1984 

The algorithm introduced in [41], while retaining the basic scheme of Figure 5, 
generates random trial points according to a probability distribution which tries to 
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take into account the local structure of the objective function. In particular, 

y=x+@4 

where u is a random uniform vector on [-fi, ti]” (this way U’S component are 
i.i.d. uniform random variables with 0 mean and unit variance), and Q is an 
appropriate transformation matrix. It is easily seen that the variance/covariance 
matrix S of the random step y - x: is related to the matrix Q by the relation 

S-QQ’. 

The approach in [41] is to compute Q from an estimate of S based on the 
accepted trial points generated during the innermost loop in Figure 5; the 
estimator used for S is the sample variance/covariance matrix of the points 
accepted during a loop at constant temperature. 

While the method appears to be interesting, as it tries to combine “intelligent” 
random search with the acceptance/rejection rule of simulated annealing, there 
are quite a lot of parameters which have to be adjusted in order for the algorithm 
to work and whose assessment is far from being easy; moreover the numerical 
results reported by the authors on a set of standard test functions for global 
optimization (see [ 181) are not particularly encouraging: the number of function 
evaluations required until stopping is very high, and, in particular, it is consistent- 
ly higher than that reported by [17] (which itself is nowadays outperformed by a 
variety of algorithms). Even more surprisingly, the reliability of the algorithm, 
when measured in terms of the estimated probability of detecting the global 
optima, computed over 100 independent runs of the algorithm over the same test 
function, is very poor: in 3 out of the 7 test functions the global optimum is 
discovered roughly 60% of the times; a simple Multistart algorithm equipped with 
a smart stopping rule in [6] was able to find the global optimum with 100% 
accuracy on the same set of test functions (which are indeed quite simple from the 
point of view of global optimization). 

Bohachevsky et al., 1986 

In [ll] a quite simple implementation of simulated annealing is presented for 
continuous optimization. The approach followed is basically that of a random 
directions method, in which, at each step, a random (uniform) point is generated 
on the surface of a sphere centered in the current point with a prefixed radius. 
Then the most basic scheme of simulated annealing is applied, with the main 
differences being that the temperature decrement is, in some sense, auto- 
regulating; that is the choice of the parameter T for the acceptance/rejection rule 
(3) is given (in our notation) by 

TK (f(x) -f*Y’ (6) 

where g > 0. This way the parameter T is automatically driven to zero, with a 
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speed regulated by g, as the point x approaches the global optimum. It is 
immediately clear that the implementation of the method requires the knowledge 
of the solution f* itself. The authors state that, should the global optimum value 
not be known in advance, an estimate p could perhaps be given whose value is 
necessarily updated only when the current value S(X) is lower than such an 
estimate, that is they propose to use 

T m max(O, f(x) - p)” . 

Moreover, assuming knowledge of the global optimum, the stopping rule consists 
just in a verification of some distance criterion between the current best solution 
and the known optimum value. 

The method, quite simple-minded, is severely invalidated by this strong as- 
sumption and also by the necessity (shared by most of the simulated annealing 
type algorithms) of setting a number of parameters whose “physical” meaning is a 
little evanescent and whose assessment is surely cumbersome. On the other side, 
the authors are successful in showing that a straightforward implementation of a 
random direction method in a simulated annealing setting is not very efficient, 
unless some modification to the acceptance/rejection rule is provided. 

A slight modification of this algorithm appears in [12] where the temperature 
parameter is set to 

T cc f(x) (7) 

(compare with (6)). Again, the acceptance/rejection rule is made dependent on 
the actual value of the objective function, but there is no more explicit dependen- 
cy on the global optimum value f *. The performance of the method is displayed 
over the 7 classical test functions introduced in [18]; the numerical results look 
quite interesting, both for the good performance of the method, and for the 
reliability in detecting the global optimum. Unfortunately, also in this paper the 
global optimum value is used for the stopping criterion, so that the comparison 
with other algorithms which make no use of such an information, is strongly 
biased. 

Corana et al., 1987 

Also Corana et al. [16] propose a mixture of the standard Simulated Annealing 
scheme with a random search method. In their approach new candidate points are 
generated by perturbing the current one along a single coordinate direction; the 
perturbation is obtained through a uniform random variable whose support is 
chosen by the algorithm. In particular, the new candidate point y is given by 

y = x + Ue, 

where eh is the hth unit vector in RN and U is a random variable uniformly 
distributed over the interval [-uh, uJ; the quantity uh > 0 is determined in an 
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adaptive way following the criterion that during the course of the inner loop (the 
one with the temperature held constant) the ratio of accepted vs. rejected moves 
should be approximately 1: 1. This seems to be the original contribution of the 
paper, which otherwise consists in a quite standard implementation of the basic 
scheme of simulated annealing. However it is questionable whether such a ratio is 
indeed “optimal”: usually such a ratio depends strongly on the temperature value, 
in that at “high” temperatures almost all moves are likely to be accepted, while 
the contrary happens at low temperatures. Moreover, the ratio of accepted-to- 
rejected moves is often used to detect the equilibrium condition necessary to exit 
the innermost loop in Figure 5 (see, e.g. 1231). It is clear that the desire of the 
authors is to try to adapt the range of exploration to the local form of the 
objective function, concentrating the sample around good local optima, but this 
could be also done in different, and more efficient ways, taking into account the 
local structure off, e.g. by using second order information (see [41]). 

Test results are provided in the paper, part of which based on the well-known 
Rosenbrock function, which is a classical test for local optimization; the appear- 
ance of such a test is again a proof of a basic misunderstanding upon which many 
random search algorithms are based, namely that the most efficient use of 
randomness lies in trying to approximate local optima. However we strongly feel 
that, being this a job very efficiently performed by local optimization routines, the 
correct place of randomness is in detecting regions of attractions of new local 
minima, and/or in providing confidence about the fact that the global optimum 
has already been found. This criticism is also supported by the numerical results 
displayed in the paper: the number of function evaluations required for a standard 
precision is a number of 6 or 7 figures, both in the Rosenbrock function test, as 
well as in other tests made with a multimodal function. 

Piccioni, 1987 

After an accurate analysis of the Pure Random Search algorithm, seen in a 
simulated annealing context, in [30] an algorithm is proposed whose acceptance/ 
rejection rule is used in order to determine whether or not to jump (like the pure 
random search method) to a different point, randomly generated in A. Letting Ti, 
i=1,2,... be i.i.d. random variables exponentially distributed with parameter 1, 
define the time instants Si, i = 1,2, . . . by 

Si = i Ti i=1,2,... 
k=l 

Then a Markov process is generated in which at time instants Sj a random 
(uniform) point y is generated in A and an acceptance/rejection criterion of the 
type employed in Figure 5 is implemented; if the new configuration is accepted, a 
jump is made to y, otherwise the current configuration is not altered. The 
interesting point is that, differently from a pure random search/simulated anneal- 
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ing algorithm, here during the time interval [Si, S,+r ) the process follows a 
deterministic descent process, performing steps in a direction which has a non-null 
component in the direction of the anti-gradient. This way the algorithms combines 
the features of a descent method with the controlled possibility of jumping to a 
different point in A at random time instants; this possibility is gradually made 
more difficult as the “temperature” of the system is lowered, as in the standard 
simulated annealing algorithm. 

The author through a detailed spectral analysis of the mixed random search/ 
simulated annealing method, supports the superiority of this scheme to those 
based on the Langevin equation (see next section). The approach seems very 
interesting; unfortunately, no numerical result is provided so a direct comparison 
with other methods is not possible. 

Lucidi and Piccioni, 1989 

In this paper [28] a general acceptance/rejection scheme is analyzed; in particular 
it is assumed that an algorithm for local optimization is available and that a 
randomization device is used in order to control whether or not to start a local 
search from a given (randomly generated) point in A. The scheme of the 
algorithm is reported in Figure 6. 
At each step a new local search is started with probability pk(. ), which is indeed 
a conditional probability in which it is possible to include all of the information 
collected during the execution of the algorithm, i.e., all of the starting points X, 
and, when a local search has been performed, the local optimizer Y,. 

Under mild assumptions on the non-null measure of the region of attraction of 
the global minimum and on the asymptotic behaviour of the acceptance probabili- 
ty pk for k * 00, it is shown that the algorithm finds the global optimum in a finite 
number of steps with probability one. However this result is common to most of 
the algorithms presented in this paper and does not provide a clear understanding 
of the actual behaviour of the algorithm; moreover the efficiency of an algorithm 
should be measured not (or not only) in terms of the number of steps necessary to 
discover the global optimum, but in terms of the number of steps required to 
confirm that the global optimum has indeed been observed. These considerations 

1. let k:=l 
2. letX,- %(A) be a uniform random vector in A 
3. let U - %([O, l)] 
4. ifU<Pk(X,IX,,Y,,.. .,X,&,, Yk-,) 

then let Yk := 9(X,) 
else let Yk := 0 

5. if a stopping criterion is satisfied then stop 
6. letk:=k+l 
7. got02 

Fig. 6. Lucidi and Piccioni. 
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are obviously generally applicable to the algorithms presented in this paper; the 
reader is again referred to [5] for a discussion on the fundamental issues of 
stopping rules. 

The conceptual algorithm of figure 6 is modified in order to produce a 
reasonable sequence of acceptance probabilities; in particular, let f,* be defined as 
the best observation obtained after k steps; then it is suggested that the accept- 
ance probabilities are defined as 

P& I . . .> = exp(-max(O, f(x) - f,* 1 lTk) (10) 
where Tk plays a role similar to that of the temperature parameter in the general 
simulated annealing scheme. It is to be noted however that, independently on the 
temperature schedule, the algorithm converges to the global optimum. 

The algorithm, though quite simple, is very interesting, as it provides a 
stochastic version of the so-called Tunneling algorithm [27], which can be seen as 
a limiting case of the algorithm of Lucidi and Piccioni when the temperature is 0. 
The fundamental drawback of the deterministic tunneling algorithm is the practi- 
cal equivalence between the problem of stopping the algorithm and the global 
optimization problem itself, which gives the algorithm the appeal of nothing more 
then a good heuristic; on the contrary, the statistical setting of the algorithm here 
discussed lends itself naturally to the design of stopping rules. Unfortunately the 
authors do not, for the moment, consider any stopping criteria, so that the 
practical implementation of the algorithm is still far from possible; even the 
numerical evidence reported is only of limited usefulness as it records the 
numbers of steps required to observe for the first time the (known) global 
optimum of the test functions presented. Further research is necessary in this 
field, but in any case it can be safely affirmed that this is the correct way of using 
Monte Carlo techniques in global optimization: as an extension to, and not as a 
substitute for, local optimization. 

4.1. THE LANGEVIN EQUATION 

The so-called Langevin equation in RN takes the form 

dx(t) = -V+(t)) dt + j/m dw(t) (11) 
where Vf is the gradient of the function f, T(t) the temperature at time t E [0, a) 
and w(t) is the standard Brownian motion in RN. Equation (11) appeared as a 
generalization of the law of Brownian motion to the case of a particle moving in a 
viscous fluid. Again, apart form its physical interpretation, the equation can be 
seen, from our point of view of looking for stochastic optimization algorithms, as 
the law of motion of a point in RN whose movement is subject to two different 
components: one is the tendency to follow down-hill trajectories along the 
direction of the anti-gradient - Vf; the other is a random fluctuation whose 
amplitude is governed by the temperature parameter T(t). 
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The Langevin algorithm consists in simulating the Markov diffusion x( * ) in 
(11) letting T(t)+ 0 as t + CCI by means of the algorithmic scheme 

*k+l = xk - a,Vf(x,) + bkWk k = 0, 1, . . . (12) 

where {W,} are i.i.d. standard gaussian random vectors with identity variance/ 
covariance matrix, uk = At, is a finite time increment and b, = j/m (see 
[19] for more details and references). 

It appears evident that the Langevin algorithm is, similarly to simulated 
annealing, a stochastic descent method, in which some up-hill moves are allowed 
in order to escape from the region of attraction of local minima. The analogy with 
simulated annealing goes further if it is observed that both algorithms admit as 
invariant distribution the Boltzmann distribution (4) $or every fixed T > 0. The 
mathematical elegance of the approach based on the Langevin equation has 
inspired good theoretical research in this field. See in particular [21,20,25,14,19] 
for various results on the convergence in probability of (12) to the set of global 
minima of $ Unfortunately, besides the formal mathematical beauty, in the cited 
papers no hint is given on the practical realization of implementable algorithms; 
nor, a fortiori, any analysis of the actual behaviour of the algorithms on standard 
test functions is provided. To our knowledge, the only relevant reference to an 
actual algorithm directly based on the Langevin algorithm is [2] which is analyzed 
next. 

AlufJi-Pentini et al., 1985 

In [2] the Cauchy problem 

dx(t) = -Vf(x(t)) dt + $?@) dw(t) 
x(0) = x0 (13) 

is considered, where the notation is as above. The idea is to integrate numerically 
(13) following the paths of the stochastic differential equation. Using the Euler- 
Cauchy discretization method, letting Ati > 0 and 

t, = 0 
k-l 

t, = c Ati k = 1,2,. . . 
i=O 

the solution x(t,+, ) is approximated by the finite difference equation 

i 

X(tk+l) = dtk) -htk?f(dtk)) + mbk+l- wk) 

x(t,) = x0 . (14) 

As a practical detail, the authors suggest not to follow a single path of (13), 
which would require too long a simulation run, but to generate simultaneously a 
fixed number of independent trajectories (with the possibility of exploiting 
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advanced computer hardware like, e.g., MIMD parallel machines). After a fixed 
number of steps have been performed, the “worst” trajectory is discarded, while 
another one is split into two different ones, which is easily accomplished thanks to 
the stochastic nature of the finite difference scheme (14). The newly generated 
path is assigned a different, usually lower, temperature T(. ). 

The performance of the algorithm is numerically investigated on several 
classical and original test problems; the overall reliability of the algorithm is 
remarkably good. The number of function evaluations, as it is common in 
algorithms of this kind, is quite high, but no astronomical numbers show up. 

Comments on Simulated Annealing 

As a general remark on all of the approaches to global optimization based upon 
simulated annealing, it seems worth to notice that a very high computational cost 
is generally required. It is difficult to state a precise measure of the “inefficiency” 
of simulated annealing as no extensive computational/theoretical comparison with 
more traditional methods is available. The overall implementation of these 
algorithms seems to be very difficult and the necessity of tuning several parame- 
ters to the objective function often shows up. It is therefore difficult to suggest 
such an approach as a general and reliable global optimization algorithm. 
Moreover too much folklore has risen around the physical meaning of 
“annealing”, thus leading to much research constrained to a curious tentative of 
imitation of “nature” (a similar misunderstanding is to be mentioned with regard 
with another class of stochastic algorithms which does under the appealing name 
of “genetic algorithms” [22] and which merely consist of a variation of random 
search). Hoping not to look too simplistic, we can state that simulated annealing 
is just a randomization device that, by means of an acceptance/rejection criterion 
which adapts its parameters in the course of the algorithm, allows some ascent 
step during the optimization process. This fact is clearly recognized in some of the 
papers here presented (e.g., [28]). Much research is still needed in order to detect 
an appropriate blend of random sampling, descent algorithms and acceptance/ 
rejection rules which leads to a practical, efficient, reliable and implementable 
algorithm. 

Several variants of the basic scheme of simulated annealing have appeared in 
the literature. Recently [44] proposed an algorithm which is similar in spirit to 
that of simulated annealing, but differs in that ascent moves are never allowed, 
while an acceptance/rejection scheme is used in order to forbid steps which 
decrease the objective function too much; this way, by not descending too fast, 
the algorithm has time to concentrate on the global optimum. The algorithm may 
be interesting, but, while sharing some of the drawbacks of simulated annealing, 
adds the disadvantage of being easily trapped in the region of attraction of local 
minima. However it is interesting to notice that the description of such an 
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algorithm applied to problems of stochastic approximation, appeared in [42], well 
before the first papers on simulated annealing. 

5. Clustering Methods 

Among the best performing methods for global optimizations are those which mix 
local search procedures with the application of clustering techniques aiming at 
grouping together (and thus identifying) points in A belonging to the region of 
attraction of the same local optimum; the methods in this class try to identify the 
shape and location of the regions of attraction of local optima in order to decide 
whether a local search started from a given point in A will eventually end up in a 
previously observed local optimum. 

In this section a brief review of some clustering techniques will be presented; 
the material reported here is quite standard, as no significant improvement to 
clustering methods have been proposed in the literature in the last five years. The 
reasons for the decreasing interest in this approach are somewhat of a mystery, as 
the algorithms within this class are very well performing in practice, though 
several critical issues, both from a computational and from a theoretical point of 
view, still need to be addressed. 

Most of the material here follows the development in the cited survey [39] and 
in [31,32] (an almost untouched version of Timmer’s Ph.D. thesis [36]). 

The general scheme of clustering methods for global optimization can be 
represented in the following form (see [39]): 

1. Sampling: draw at random a fixed number of points in A and observe the 
associated function values. 

2. Concentration: transform the sample so that points belonging to regions of 
attraction of different local optima can be identified by the subsequent 
clustering analysis step; the most commonly used among the concentration 
techniques are those first introduced in [4] and [37]. In the former, the sample 
is reduced by eliminating a fixed percentage of points with higher function 
values; in the latter, a few steps of a descent algorithm are started from each 
sampled point. 

3. Clustering: an appropriate clustering technique is employed in order to 
associate points to regions of attraction of local optima. 

4. Stopping criterion: if some stopping condition is met, stop (possibly after 
performing some final computation, such a complete local optimization from 
selected points). Otherwise: 

5. Transform the sample, retaining some or all of the points generated at step 2, 
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or retaining some of the “best” clusters as well as information on their shape, 
like, e.g., the radius of each cluster. Then repeat from step 1. 

Clustering techniques are standard statistical methods aiming at grouping 
objects by means of a similarity criterion; often data can be represented as points 
in an Euclidean space and the similarity measure is taken to be the euclidean 
norm. A critical issue in implementing any kind of clustering technique is the 
choice of a threshold, which is used by the algorithm in order to decide if a point 
is “near” (i.e. within such a critical distance) to a representative point of the 
cluster (a so-called “seed” of the cluster). 

The most commonly used clustering technique in the context of global optimi- 
zation consists of partitioning the available observations into groups, sequentially 
assigning sampled points to clusters grown around “natural” seed points (in this 
framework natural seed points are usually local optimizers, or, in general, points 
with low function value). The simplest technique for deciding whether or not a 
new point should be added to a cluster is by means of comparison of the distance 
of such a point from the nearest seed point with a computed threshold: the 
clustering algorithm consists in building concentric hyperspheres, centered in a 
seed point, and by adding points to the cluster until the average density of points 
within the hypersphere is higher than the average density of sampled points. This 
clustering technique is used in [38]. In [34] clusters are grown around seed points 
based on the k-th nearest neighbor statistics; in this approach the critical distance 
is given by 

qm j=l,...,k 

where pj,l-, is the (1 - cY)-quantile of the Beta distribution with parameters j and 
n - j (n being the sample size), and (Y E (0,l). In this as well as in most methods, 
the reduction technique of eliminating the worst points from the sample is used, 
despite the other one, based upon local descent, seems superior: the main reason 
for this is that this way, denoting by f* * the highest function value in the reduced 
sample, uniform distribution is still retained, but now on the level set 

2& = {x E A: f(x) sf**} . 

The choice of (Y in [34] roughly corresponds to the probability of misclassifying a 
point under the null hypothesis that the reduced sample is still uniformly 
distributed over the connected component of the level set J+*. 

In [lo] a modification is proposed in which ellipsoidal-shaped clusters are grown 
instead of spherical ones: the idea is to try to approximate best the level sets of 
the objective function near local optima. In [36] a very simple criterion is used, by 
which a local search is not started from a point x if there exists another sampled 
point with lower function value within a critical distance given by 

v’%+/L(A)T(~ + N/2) log k/k 
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where (+ is a constant and k represents the total number of sample/concentrate/ 
cluster loops executed. The motivation for this formula is mainly heuristic, but it 
is easily proven that if c > 4 the total number of local searches started by the 
algorithm is finite with probability one. Despite the simplicity of the approach and 
the lack of rigorous theoretical justification, the heuristic performs quite well in 
practice. The main difference between this criterion and that proposed in [34] is 
that in [lo] thresholds are computed upon asymptotic considerations, whereas in 
[34] the exact finite sample distribution is considered. 

As in most stochastic algorithms for global optimization, one of the most 
difficult and critical issues consists of choosing appropriate stopping rules; here 
the situation appears even more critical then elsewhere, as each time the stopping 
criterion is not met, a whole new sample with the associated local optimizations 
and clustering runs is started, so that late stopping produces very big amount of 
extra computation. Unfortunately still no satisfactory answer has been given on 
this very subject, which remains one of the most challenging research issues to be 
addressed in the context of global optimization. 
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